From Research to Practice: Evidence-backed Insights For Implementing Markerless Motion Capture Technology for Ergonomics Assessments

Dennis J Larson, PhD, AE Postdoctoral Fellow | University of Waterloo Associate Ergonomist | PROergonomics Inc.

Integrated Knowledge Translation – we co-create together!

Markerless Mocap & Computer Vision

- Technological & machine learning advancements enabling identification of key points of human body from RGB images
- 3D human pose estimated from multi-view or single-view images/videos

Multi-view Methods

Adapted from Kim et al., 2021

Single-view Methods

Adapted from Paudel et al., 2022

Computer Vision - novel technology to assess MSD risks

- Rapid emergence of computer vision-based MSD assessment tools
- Many questions surrounding best practices for using these technologies
 - Is there an optimal viewing angle improved for pose accuracy?
 - What if I need to film the same job at 2 or more plants but can't film from the same viewing angle at all plants?
 - Does speed of motion influence image blur and therefore pose accuracy?
 - Do outputs differ depending on the pose estimator approach?

Developing Guidelines & Best Practices for Users

AMONG HEALTHY, ABLE-BODIED INDIVIDUALS PERFORMING A SERIES OF SIMULATED OCCUPATIONAL TASKS, DOES:

- \succ the angle of video recording,
 - > the task pace, or
- > the computer vision approach

influence estimated **trunk or shoulder elevation angles** relative to angles estimated using a lab grade motion capture approach.

Participants & Tasks

- 40 participants
 (20 M, 20 F)
- 6 different tasks
- Fast & Slow speeds

Above Shoulder Work

Floor-Shoulder Lift

Cutting/Trimming

Palletizing

Packaging

Cart Push/Pull

8 Cameras Capturing Synchronized Videos

Palletizing Example (Theia Skeletal Overlay)

Single Camera Pose Estimated Data

• Each video is processed through 4-5 separate pose estimators

Extract Shoulder Elevation & Trunk Angles \rightarrow Compare Data

Optimizing Human Performance

RESULTS <u>(SO FAR)</u>

CAMERA ANGLES & MOVEMENT PACE

Left Shoulder Elevation – ASW

Left Shoulder Elevation – ASW

Key Take Away - We're not comparing the same thing!

OCCUPATIONAL

ERGONOMICS LAB **Optimizing Human Performance**

FACULTY **OF HEALTH**

Left Shoulder Elevation – ASW

 Partial body occlusions on contralateral side

Left Shoulder Elevation – ASW

Left Shoulder

Key Take Aways:

- Side view to plane of motion performs best
- Avoid occlusion of view
- Slower pace → greater RMSD in "non-optimal" camera views

Right Shoulder Elevation – ASW

 Similar results, but just flipped for the right side

Right Shoulder Elevation – ASW

<u>Right Shoulder</u>

Key Take Aways:

- Perpendicular view to plane of motion \rightarrow lower RMSD
- Avoid occlusion of view
- Record motion on same side of joint of interest

Key Take Aways <u>(so far)</u>

Video Recording Angle Matters!

- Perpendicular to motion plane, avoid occlusions
- Record on same side as joint of interest

Limited Influence of Movement Pace

- For videos recorded from "optimal views"

Right Shoulder Elevation - Palletizing

<u>Right Shoulder</u>

Key Take Aways:

- Perpendicular view of major plane of motion performs best
- Slower pace → greater RMSD in "non-optimal" camera views

Trunk Angle - Palletizing

Key Take Aways:

- Perpendicular view of major motion plane → lower RMSD
- Limited influence of movement pace in "optimal" views

Key Take Aways <u>(so far)</u>

Video Recording Angle Matters!

- Perpendicular to motion plane, avoid occlusions
- Record on same side as joint of interest

Limited Influence of Movement Pace

- For videos recorded from "optimal views"

Right Shoulder Elevation - Packaging

<u>Right Shoulder</u>

Key Take Aways:

- Side view of major plane of motion on same side as joint of interest
- Similar to results from ASW task

Trunk Angle - Packaging

Key Take Aways:

- Camera angle perpendicular to major plane of motion performs best
- Slightly greater RMSD in fast paced movements across most angles

Key Take Aways <u>(so far)</u>

Video Recording Angle Matters!

- Perpendicular to motion plane, avoid occlusions
- Record on same side as joint of interest

Limited Influence of Movement Pace

- For videos recorded from "optimal views"

Key Take Away - Similar Results Across Companies

Key Take Aways <u>(so far)</u>

Video Recording Angle Matters!

- Perpendicular to motion plane, avoid occlusions
- Record on same side as joint of interest

Limited Influence of Movement Pace

For videos recorded from "optimal views"

Subtle differences but similar results & interpretation across companies

Further data analysis required**

What Does This All Mean for Ergonomics <u>Now</u>?

- Not as simple as "point & shoot"
- Requires training/guidance to capture data appropriately
- Integration with existing single task assessment tools
 - NIOSH
 - LM-MMH equations
 - REBA/RULA
 - Strain Index, etc.

Bridging Ergonomics from the <u>Past, Present, & Future</u>

Ontario Universities Back Pain Study

- Captured videos of workers on various tasks
 - <u>Side</u> profile of trunk flexion/extension
- <u>Manual entry</u> of postural information to match stick figures to the worker's posture
- Identified biomechanical factors associated with reporting of low back pain
 - Peak & cumulative spine loading
 - Peak flexion & flexion velocity

What Does This All Mean for Ergonomics in the <u>Future</u>?

Ability to capture time series data in the workplace like never before!!

Modern workplaces involve performing multi-task work → cumulative exposures

Optimizing Human Performance

Development of multi-task assessment tools using in-field exposure data

Thank You! Any Questions?

Dennis Larson

Email: dlarson@uwaterloo.ca

Dave Brodie

TuMeke

3motionAl

